You are here

Aufgabe 20

Bei Kernreaktionen entstehen zu 0,65% (τ=14s) verzögerte und zu 99,35% (τ=92ms) prompte Neutronen. Erklären Sie anhand der Berechnung für einen k-Faktor von 1,001 die wichtige Bedeutung der verzögerten Neutronen, bis ein Kernreaktor nicht mehr steuerbar ist (Reaktionsrate sich verdoppelt hat).

Ein Hinweis zum Verständnis findet man auf https://www.uni-due.de/fb8/fbphysik/Hauptseminar/WS0506/Ausarbeitung_Ker..., Seite 25: Wenn man einen Reaktor steuern will, muss das  mithilfe mechanischer Elemente geschehen. Irgendwelche mechanischen Teile kann man aber nicht gut im Millisekundenbereich ein und ausfahren.

Betrachten wir die Neutronenvermehrung und die dazugehörende Funktion  N=N0e(k1)t/τ. Wann hat sich die Anzahl an Neutronen verdoppelt? Also wann ist N=2N0?

Dazu rechnen wir 2N0N0=2=e(k1)t/τ. Durch beidseitiges Logarithmieren erhält man ln2=(k1)t/τ. Auflösen nach t ergibt: t=τk1ln2.

Für die prompten Neutronen (τ=92ms) erhält man t=92103s1,0011ln263,8s.

Und für die verzögerten Neutronen (τ=14s) erhält man t=14s1,0011ln29704s162min2,5h.

Mit den verzögerten Neutronen dauert es also deutlich länger, bis sich deren Anzahl verdoppelt hat. Daher muss man einen Reaktor so bauen, dass er allein mit den prompten Neutronen noch nicht zur unbeschränkten Kettenreaktion kommt. Die verzögerten Neutronen brauchen viel länger, bis damit eine Reaktion unkontrollierbar wächst, dass man einige Minuten Zeit hat, um entsprechendes "Bremsmaterial" in einen Reaktor einzubringen und den Reaktor wieder "runterzufahren".