You are here

Thermodynamik Formelsammlung

irreversible Expansion gegen $p_a=0$:

  W Q $\Delta U$ $\Delta T$ Enthalpie $\Delta H$ Entropie $\Delta S$
isotherm 0 0 0 0    
adiabatisch 0 0 0 0    

irreversible Expansion gegen konstanten äußeren Druck $p_a=const.$:

  W Q $\Delta U$ $\Delta T$ Enthalpie $\Delta H$ Entropie $\Delta S$
isotherm $- p_a \Delta V$ $p_a \Delta V$ 0 0    
adiabatisch $- p_a \Delta V$ 0 $- p_a \Delta V$ $\frac {- p_a \Delta V}{C_V}$ 0 Isochore Abkühlung + reversible isotherme Expansion:
$C_V ln \frac{T_2}{T_1} +$ $n \cdot R \cdot ln \left( \frac{V_2}{V_1} \right)$

reversible Expansion oder Kompression:

  W Q $\Delta U$ $\Delta T$ Enthalpie $\Delta H$ Entropie $\Delta S$
isotherm $- n R T ln \left( \frac{V_E}{V_A} \right)$ $n R T ln \left( \frac{V_E}{V_A} \right)$ 0 0  0 $n \cdot R \cdot ln \left( \frac{V_2}{V_1} \right)$
adiabatisch $C_V \Delta T$ 0 $C_V \Delta T$ $\left( \sqrt [c] { \frac {V_A}{V_E} } -1 \right) \cdot T_A$ mit $c=\frac{C_{v,m}}{R}$ $\Delta U +$ $(p_2 V_2 - p_1 V_1)$  0